
Providing Statistical Reliability Guarantee for Cloud

Clusters

Zhouhan Yang∗, Anna Ye Du†, Sanjukta Das†, Ram Ramesh†, Thomas Furlani‡, Gregor von Laszewski§, Chunming Qiao∗
∗Department of Computer Science and Engineering, University at Buffalo (SUNY), Buffalo, NY, USA
†Management Science and Systems Department, University at Buffalo (SUNY), Buffalo, NY, USA

‡Center for Computational Research, University at Buffalo (SUNY), Buffalo, NY, USA
§Indiana University, Bloomington, IN, USA

Abstract—The ability to guarantee a high target reliability in a
Service Level Agreement (SLA) for customers is critical for cloud
providers to grow their business. Any SLA violation could cause
revenues and reputation damage. In order to avoid such SLA
violation on reliability, cloud providers typically allocate some
backup Virtual Machines (VMs) beyond the number of VMs a
customer requests. In the meanwhile, cloud providers also seek
to minimize the operation costs, which are closely related to the
number of backup VMs allocated to the customer. Thus an open
question for cloud providers is how to choose the minimal number
of backup VMs to guarantee the specified reliability statistically.

In this paper, we investigate several failure scenarios in cloud
data centers and build statistical models for them. Based on that,
we take advantage of a tail bound theorem and propose some
novel heuristic VM placement algorithms to resolve the above
open problem in a nice way. We do extensive simulations to
validate our results.

Index Terms—Data center, reliability;

I. INTRODUCTION

As the cloud computing market continues to grow, the

reliability of cloud services affected by various failures such

as inaccessibility of cloud resources, becomes increasingly

more critical. It is essential for cloud providers to make a

guarantee for highly reliable services in the form of Service

Level Agreement (SLA), which is challenging due to the

complex nature of failures in a cloud cluster consisting of

a number of servers, switches, etc.

In IaaS, a customer or application typically requires a

certain number of Virtual Machines (VMs) to be up for a

contract time. The reliability of an application is defined as the

probability that the number of operational VMs remains above

its requirement specified in the SLA over all possible failures

[1]. Even though the cloud providers can provision new VMs

when failures occur, the provision may have to go through

complex scheduling system and result in long latency to meet

the critical reliability requirements. Therefore, the common

practice of cloud providers is pre-allocating some number of

backup VMs distributed over different locations (e.g., different

racks and data centers) for applications to tolerate various

failures. Cloud providers want to provide a high reliability

guarantee to make their customers happy; on the other hand,

they try to minimize the number of backup VMs in order to

reduce their operation cost which is dominated by the server

costs. In reality, it is very challenging to figure out the minimal

required number of backup VMs for an application and how

to place them. Cloud providers need to carefully deal with the

tradeoff between the increased costs due to over-provisioning

backup VMs and the risk of reliability violation due to under-

provisioning.

There have been some related work along this line. A large

body of papers have studied the VM placement problem with

multiple objectives such as energy saving [2] [4] [5], QoS [8]

[12], and deal with the agile resource allocations issues as

the resource requirements of applications dynamically change

over time [7]. However, these studies haven’t taken reliability

requirements of applications into account, which may cause

the applications or services to be abnormally terminated due

to the server or switch failures. [1] and [6] considered pre-

assigning backup VMs to applications to achieve a high

reliability but they made the very limited assumption regarding

the failures in a cloud cluster (e.g., they assumed the simplistic

independent VM failure model.) Unfortunately, in practice,

failures generally may spread from one VM to another.

In this paper, we build a new solution to better tackle VM

provision and placement problems. Our work differs from

all the previous work by considering concurrent server and

ToR switch failures and providing the statistical models to

compute the minimum number of backup VMs needed for

each application given its reliability requirement. In summary,

• We build practical statistical models for various device

failure scenarios;

• We adopt a nice tail bound theorem to infer the optimal

number of backup VMs given a fixed reliability require-

ment. We use simulations to validate our results;

• We invent the heuristic VM placement algorithms to

maximize the potential reliability strategically.

The rest of the paper is organized as follow. Section II

formulates the reliability problem we target in this paper. In

Section III, we start with a simplistic independent VM failure

model where the number of minimal backup VMs can be

computed directly. Then in Section IV, we move to the other

two more realistic and complex failure models in which we no

A

1 2

Core Layer

Aggregate Layer

ToR Switch

Racks

Rack 1 Rack 2 Rack 3 Rack 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Access Layer

Servers

Fig. 1: Example of VM placement

longer have independent VM failures and there is no closed

form solution to compute the tail probability of the failed

VMs. Section V presents our simulation results. Conclusion

and future work are presented in Section VI.

II. PROBLEM FORMULATION

The functional layers of a cloud data center are typically

built around three layers: the core layer, the aggregate layer

and the access layer as in Fig. 1 [10]. The core layer is

central to the data center network and provides interconnection

between the aggregate layers. Typically, the core layer utilizes

high performance low latency switches as Layer 3 devices.

The aggregate layer acts as a services layer for the data center.

Services such as load balancing, SSL optimization, firewalling,

etc. are typically found at this layer. The access layer provides

connectivity for the servers on different racks connected by

ToR switches.

In this paper, we mainly focus on the failures in the access

layer: physical server failures and ToR switch failures. The

former causes all VMs on the failed server to fail while the

latter makes all the VMs inside that rack to be inaccessible.

We leave the failures of the core and aggregate layers and

inter-cluster failures for the future work, which lead to more

sophisticated failure models.

In the rest of this paper, we use n to indicate the number

of VMs a customer requests and k to indicate the number of

backup VMs the cloud provider offers during a given contract

time, respectively. We define the reliability as follows:

Definition 1: Let V be a random variable indicating the

number of failed VMs at some time instant during the contract

time, where 0 ≤ V ≤ n + k. The reliability in SLA denoted

by α is defined to be Pr[V ≤ k] = 1− Pr[V > k].

Now the problem we target is

Problem 1: minimize k subject to given n and α

Finding an optimal solution of this problem is a challenging

open problem. It requires appropriate statistical modeling of

server and switch failures, some strong mathematical tools

on tail bound, and effective reliability-aware VM placement

algorithms, etc. In the following sections, we are going to

describe our approach to address the above optimization

problem.

III. INDEPENDENT VM FAILURE MODEL

In this section, we present the solution to Problem 1 in an

unrealistic simplistic failure model. In this model, only physi-

cal servers could fail and all switches are guaranteed to work

always. We assume that the failures of servers are independent

and identically distributed without loss of generality 1. We

also assume that each physical server can only host at most

one VM of a particular application. Under this constraint, a

physical server failure will result in at most one VM failure for

this application. It sheds light on more convoluted and realistic

models we will investigate in Section IV.

For an application, let V denote the total number of failed

VMs. Assuming the failure rate of a physical server is x. It

is clear that a VM can either fail at the rate of x, or stay

available at the rate of 1 − x, thus the VM failures follow

binomial distribution.

According to Definition 1, we would like the probability

that the number of failed VMs larger than k (Pr[V > k])be

smaller than 1−α. So the formulated problem as in Problem

1 becomes:

Problem 2:
minimize k

subject to

Pr[V > k] ≤ 1− α (1)

As the VM failures follow binomial distribution, The prob-

ability that we have more than k VMs failures can be directly

computed as:

Pr[V > k] =

n+k∑

i=k+1

Ci
n+kx

i(1− x)n+k−i (2)

We can simply iterate the possible values of k to find the

minimum – we start k at some small initial value (e.g., 1) and

compute the corresponding Pr[V > k] using Eq. 2. We use

eq. 1 to validate the value of k. If the constraint can not be

met, we will increment k by 1 and iterate the above steps.

We will stop once the eq. 1 is not violated. Some simulation

results are shown in Section V.

IV. CORRELATED VM FAILURE MODELS

In this section, we are going to bring Problem 1 into some

realistic failure models where we allow multiple VMs of an

application allocated to a single physical server and consider

the failure scenario of the ToR switches. Therefore, in these

models, we no longer have independent VM failures and the

number of failed VM does not follow binomial distribution

any more. Thus there is no closed form solution to compute

the tail probability.

In the rest of this section, we are going to present a novel

approach to tackle the problem. This approach is based on the

previous simplistic independent failure model and an advanced

tail bound theorem which is not well known but provides

1It is not hard to extend our approach to handle the non-identical distribu-
tions.

a very tight tail bound for the sum of independent random

variables. We will first introduce this tail bound theorem

and then demonstrate how to take advantage of it to address

Problem 1 in two correlated failure models with our well-

designed VM placement algorithms.

A. A Tail Bound Theorem

We ground our study on a tail bound theorem originally

presented in [13] which is an enhanced version of Theorem

A.1.19 in [9].

Theorem 1: Given any θ > 0 and ε > 0, the following holds:

Let Wj , 1 ≤ j ≤ m, for some arbitrary m, be independent

random variables with E[Wj] = 0, |Wj | ≤ θ and V ar[Wj] =
σ2
j . Let W =

∑m
j=1 Wj and σ2 =

∑m
j=1 σ

2
j so that V ar[W] =

σ2. Let δ = ln(1 + ε)/θ. Then for 0 < a ≤ δσ.

Pr[W > aσ] < e−
a2

2 (1− ε
3) (3)

In the next three subsections, we are going to demonstrate how

this theorem help derive the optimal number of k in Problem

1 for various failure models.

B. Correlated VM Failure Model (Server)

Now let us look at the model when we have independent

server failures and reliable switches. In this model, the VM

failures on a single server are correlated while the VM failures

across different physical servers are still independent.

Assume m denotes the total number of servers, nj denotes

the number of VMs on the jth server and the failure rate of

each physical server is still x. Let Sj denote the number of

failed VMs on the jth server and S denote the total number

of failed VMs among the n+k VMs of an application. So we

have E[Sj] = njx and V ar[Sj] = n2
jx(1− x), thus

E[S] =
m∑

j=1

E[Sj] = (n+ k)x (4)

V ar[S] =

m∑

j=1

σ2
j =

m∑

j=1

n2
jx(1− x) (5)

We now describe how to apply Theorem 1 to our problem.

Let W be the normalized value of S, so we have W = S −
E[S]. And Wj be the normalized value of Sj , so Wj = Sj −
E[Sj]. Thus, according to Definition 1 the reliability is

α = 1− Pr[S > k] (6)

= 1− Pr[W + E[S] > k]

= 1− Pr[W > k − (n+ k)x]

According to 1, the formulated problem as in Problem 1

then becomes

Problem 3:
minimize k

subject to

e−
a2

2 (1− ε
3) ≤ 1− α (7)

0 < a ≤ δσ (8)

0 < eδθ − 1 = ε < 3 (9)

aσ ≤ k − (n+ k)x (10)

To meet the reliability requirement, we would like the

probability that the total number of failed VMs larger than

k (Pr[S > k] = Pr[W > k − (n + k)x]) to be smaller than

1 − α. According to theorem 1, Pr[W > ασ] is bounded

by e−
a2

2 (1− ε
3). So we bound e−

a2

2 (1− ε
3) by 1 − α as eq. 7

shows. And we need bound Pr[W > k − (n + k)x] as

Pr[W > k − (n + k)x] ≤ Pr[W > ασ], thus we derive

the constraint in eq. 10. As e−
a2

2 (1− ε
3) < 1, so 1− ε

3 > 0. We

obtain ε < 3 as shown in eq. 9.

In order to resolve the problem in this more complex failure

model, We need to find the appropriate values for θ, ε and a
to minimize k in order to bring down the server costs. |Wj |
is the lower bound for θ, j = 1, 2, ..., n + k. According to

Eq. 9, large θ leads to small δ and then the value range of a
narrows down according to Eq. 8. As k is related to the value

of a according to Eq. 10, we would like the possible range

of a to be as wide as possible in order to find the optimal k.

Therefore we set θ to the largest value |Wj | could be (i.e.,

max nj(1− x), 1 ≤ j ≤ m).

Algorithm 1 Single level round robin placement algorithm

1: j = 1
2: for i = 1 to n+ k do
3: place VMi on the jth server

4: j+ = 1
5: if j > m then
6: j = 1;

7: end if
8: end for

The optimization becomes more convoluted because

V ar[W] is a function of the VM placement on the physical

servers across racks instead of a value in the simplistic model

in Section III. In order to maximize the reliability, the desirable

placement strategy is distributing VMs on as many physical

servers as possible. Following this strategy, we propose a novel

heuristic placement algorithm in Algorithm 1 which distributes

the n+k VMs on m servers in a round-robin way. Following

this method, we distribute the VMs as much as possible, thus

the reliability violation risk can be minimized. Note that the

algorithm always tries to place the VM to the first server

which has enough capacity to host the VM in the order. If the

servers are not able to host all the VMs of the application,

the algorithm is going to reject the application. In reality,

cloud providers could migrate the application to other data

centers or add more racks and servers in order to accommodate

customers requests.

Given Algorithm 1, we apply the following brute force

approach to find the optimal k. Since the minimal k in

this failure model must be larger than that (denoted by k1)

in the independent VM failure model in Section III, we

apply Algorithm 1 with k = k1 to obtain the values of

nj , 1 ≤ j ≤ m. Thus we can calculate the corresponding

σ. a can be computed by Eq. 10. In order to satisfy Eq. 7,

we would like to minimize ε, which indicate the value of δ
should be as small as possible. Thus δ and ε can be obtained

by Eq. 8 and Eq. 9, respectively. We abandon all the results

which violate Eq. 7. If there is no results left, we increment

the value of k by 1 and iterate the above steps until Eq. 7

is satisfied. Now we have the minimal k to satisfy all the

constraints. Some simulation results are shown in Section V.

C. Correlated VM Failure Model (ToR Switch and Server)

In this section, we investigate an even more complicated

and realistic failure model that both physical servers and

ToR switches could fail at some rates. A ToR switch failure

would make all physical servers on the corresponding rack

inaccessible and hence all the associated VMs on this rack.

Thus the VM failures inside a rack are correlated, while the

failures across different racks are independent.

Without loss of generality, we assume that the total number

of racks in a cloud cluster is mr, and each rack has ms

physical servers. Note that the adaption to the case where the

number of servers is different across racks is trivial. Let y
and x denote the failure rates of ToR switches and servers

respectively, note that we assume the failure distribution of

switches and servers are i.i.d. In addition, Sij denotes the

number of failed VMs on the ith server belonging to the jth
rack, Rj denotes the total number of failed VMs on the jth
rack, and R denotes the total number of failed VMs among the

overall n+ k VMs. We have nj to stand for the total number

of VMs on the jth rack, and nij to stand for the total number

of VMs on the ith server inside the jth rack.

so E[Rj] can be computed as:

E[Rj] = njy + (1− y)(

m2∑

i=1

E[sij])

= njy + njx(1− y)

and V ar[Rj] can be computed as:

V ar[Rj] = E[R2
j]− E[Rj]

2

= (n2
jy) + (1− y)(E[(

m∑

i=1

sij)
2])− E[Rj]

2

When rack j is up, the failures of the servers inside this rack

are independent. So E[(
∑m

i=1 Sij)
2] can be computed as:

E[(

m∑

i=1

Sij)
2] = E(

m∑

i=1

S2
ij +

m∑

i1 �=i2,i1,i2

Si1jSi2j)

=

m∑

i=1

E[S2
ij] +

m∑

i1,i2=1,i1 �=i2

E[si1j]E[si2j]

=

m∑

i=1

n2
ijx+

∑

i1 �=i2,i1,i2

ni1jni2jx
2

So both E[Rj] and V ar[Rj] are the functions of y, x and

the placement of VMs across servers on this rack (i.e., nij , 1 ≤

i ≤ ms). And it is not hard to see that both E[R] =
∑

j E[Rj]
and V ar[R] =

∑
j V ar[Rj] are also the functions of y, x and

the VM placement across mr racks.

In order to apply Theorem 1, we have W = R−E[R], and

Wj = Rj−E[Rj]. And the reliability α becomes 1−Pr[R >
k] = 1− Pr[W > k − E[R]].

We need to find the appropriate values of the parameters

to minimize the value of k. Similar as previous two failure

models, we want to solve the following optimization problem:

Problem 4:
minimize k

subject to

e−
a2

2 (1− ε
3) ≤ 1− α (11)

0 < a ≤ δσ (12)

0 < eδθ − 1 ≤ ε < 3 (13)

aσ ≤ k − E[R] (14)

Algorithm 2 Two level round robin placement algorithm

1: cj = 1 for all 1 ≤ j ≤ mr

2: j = 1
3: for i = 1 to i = n+ k do
4: place VMi on cjth server on jth rack;

5: cj+ = 1;

6: if cj > ms then
7: cj = 1;

8: end if
9: j+ = 1;

10: if j > mr then
11: j = 1;

12: end if
13: end for

As in Section III and IV-B, we set θ to its lower bound

max nj(1− y), 1 ≤ j ≤ mr to maximize the selection range

of a. Since V ar[W] is a function of the VM placement, we

must have a desirable placement to infer the optimal k. In

Algorithm 2, we introduce a heuristic placement algorithm

sharing the same spirit in Algorithm 1 – distributing n+k VMs

on mr racks (and then ms servers on a rack) in a round-robin

way to maximize reliability.

The algorithm works as shown in follows. To place VMi,

we search the first rack which has enough capacity to host it in

the order of j, j+1, ., mr, 1, 2, , j−1 assuming VMi−1 chose

Rackj−1. The located rack is denoted as Rackx. Assuming

the last VM allocated on this rack choose Servera, we search

the first server which has enough capacity to host VMi in

the order of a+1, a+2, ,ms, 1, 2, , a and place VMi on that

server. With this algorithm, we distribute the VMs as much as

possible, thus the influence of correlated failures is minimized.

Since the minimal k in this failure model must be larger than

that (denoted by k2) in the simpler model in Section IV-B, we

run Algorithm 2 to obtain the overall placement (i.e., nij , 1 ≤

i ≤ ms, 1 ≤ j ≤ mr) starting with k = k2. Then we obtain the

corresponding σ and a by Eq. 14. Then δ and ε are obtained via

Eq. 12 and Eq. 13 respectively. Then we need ensure Eq. 11 is

satisfied by adjusting the current value of k and corresponding

placement as necessary. If it is not, we increment the value

of k by 1 and iterate the above procedure until we find the

minimal viable k. Some simulation results can be found in

Section V.

V. PERFORMANCE EVALUATION

In this section, we show some simulation results and com-

pare them to that from Section IV. We simulate a data center

topology as in Fig. 1, consisting of 50 racks, each of which

has 20 servers. And each server can host at most 10 VMs.

We set the homogeneous failure rates of ToR switches and

physical servers to 0.05 [3] and 0.02, respectively. 2

A. Comparison of Reliability

Table I compares the reliability achieved by our presented

approaches in Section III and IV with two different simulation

setups. We show the comparison results in three different fail-

ure models discussed in Section III, IV-B and IV-C (denoted by

the first column of the table) when the number of requested

VMs n = 100. In this experiment, we tune the number of

backup VMs k so that the resulting reliability in our approach

is equal to 95% approximately. Then given the resulting k
value, the simulation 1 uses the proposed VM placement

algorithms (Algorithm 1 and Algorithm 2) to place the 100+k
VMs onto the servers/racks and then serves with the failure

rate 0.02 and 0.05, respectively. We iterate these steps for

5, 000 applications, and calculate the probability of the case

where the number of failed VMs is less than or equal to k as

the reliability of the simulation. The simulation 2 is mostly

the same as simulation 1 except that it distributes the VMs

onto different racks and servers randomly instead of using our

placement algorithms.

The results in Table I show that our approaches in the

correlated VM failure models bound the reliability very well.

Given the same number of backup VMs, the simulation 1

shows somewhat higher reliability because it is the average

from 5, 000 samples while our solution bounds the worse

case. The simulation 2 shows lower reliability compared to

our approach, which demonstrates the effectiveness of our

placement algorithms. Note that the independent VM failure

model (Section III) is an exception because there is no

placement issue, so we use a different approach to solve the

problem.

B. Comparison of Number of Backup VMs

Besides the experiments we performed in Section V-A, we

performed another set of experiments which compare the min-

imal number of backup VMs needed among our approaches

2We also extend our simulations under the situation that the failures come
following some other distribution in the journal version paper, it has not been
shown here due to the interest of space.

TABLE I: Comparison of reliability between Section IV and

simulations
Model k Our approach Simulation 1 Simulation 2

Section
III

4 95% 96% N/A

Section
IV-B

14 95.9% 98.8% 93.7%

Section
IV-C

37 95.3% 99.2% 92.6%

90 % 91 % 92 % 93 % 94 % 95 % 96 % 97 % 98 % 99 % 100%
2

3

4

5

6

7

8

9

Reliability Request

N
um

be
r o

f B
ac

ku
p

V
M

s(
k) Our approach

Simulation 1

(a) Change reliability requests

20 40 60 80 100 120 140 160 180 200
2

3

4

5

6

7

8

9

10

Number of Primary VMs(n)

N
um

be
r o

f B
ac

ku
p

V
M

s(
k) Our approach

Simulation 1

(b) Change number of VMs re-
quests

Fig. 2: Results of independent VM failure model

90 % 91 % 92 % 93 % 94 % 95 % 96 % 97 % 98 % 99 % 100%
5

10

15

20

25

30

Number of Primary VMs(n)

N
um

be
r o

f B
ac

ku
p

V
M

s(
k) Our approach

Simulation 1
Simulation 2

(a) Change reliability requests

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

Number of Primary VMs(n)

N
um

be
r o

f B
ac

ku
p

V
M

s(
k) Our approach

Simulation 1
Simulation 2

(b) Change number of VMs re-
quests

Fig. 3: Results of correlated VM failure model for server

90 % 91 % 92 % 93 % 94 % 95 % 96 % 97 % 98 % 99 % 100%
10

20

30

40

50

60

70

Number of Primary VMs(n)

N
um

be
r o

f B
ac

ku
p

V
M

s(
k) Our approach

Simulation 1
Simulation 2

(a) Change reliability requests

20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

Number of Primary VMs(n)

N
um

be
r o

f B
ac

ku
p

V
M

s(
k) Our approach

Simulation 1
Simulation 2

(b) Change number of VMs re-
quests

Fig. 4: Results of correlated VM failure model for ToR switch

and server

and two simulation setups given the fixed value of reliability.

In the simulation 1, we use Algorithm 1 and Algorithm 2 in

the corresponding failure models, gradually increase the value

of k and calculate the corresponding reliability until we reach

a value which is equal to or larger than the target reliability

(ideally the value should be pretty close to the target, i.e.

1.01 α). The simulation 2 is mostly the same as proposed

approach except that we adopt random placement instead of

our well-designed algorithms. Fig. 2, Fig. 3 and Fig. 4 plot

the simulation results for the three different failure models we

have investigated in this paper.

The left figure in Fig. 2 plots the number of backup VMs for

both simulation 1 and our proposed solution of independent

VM failure model by varying the reliability requirements from

90% to 99.9% (the number of requested VMs is fixed at 100).

It is clear that the higher the requested reliability, the more

backup VMs we need. It can be seen from the figure that

our approach matches the simulation results closely. Keep in

mind that in this model, we don’t have any placement issues.

The right figure varies the number of requested VMs from

20 to 200 and plots the number of backup VMs with the

fixed reliability requirement 99%. Similarly, the results of our

approach match closely with the simulation. We do not plot

the results of simulation 2 here because there is no placement

issue in the independent VM failure model.

Fig. 3 and Fig. 4 show the simulation results for the

correlated VM failure model for servers in Section IV-B and

the correlated VM failure model for ToR switches and servers

in Section IV-C, respectively. It can be seen from the figure

that our approach servers as an upper bound of the simulation

1 results in each model as it bounds the worst case while the

simulations results show the average. In addition, our approach

requires much less back VMs than the simulation 2 given the

same experiment configuration, which proves the effectiveness

of our placement algorithms.

Fig. 4 shows the results of bi-level failure model in Section

IV-C. As we can see from the results, the value of k is

larger than Fig. 2 and Fig. 3, which is as expected. In this

scenario, we have two levels of failures, which can cause

more correlated VM failures than the previous two scenarios.

In order to not violate the reliability requirement, we need

allocate more backup resources than the previous two cases.

It is not hard to see that the higher the failures are correlated,

the more backup VMs are needed to achieve some reliability

requirements.

VI. CONCLUSION

In this paper, we have, for the first time, proposed a solution

to directly derive the optimal number of backup VMs and

VM placement strategy for a cloud cluster given the required

number of VMs and reliability target as part of SLA. We

investigated three different failure models from simplistic to

complex and realistic failure models: 1) independent VM

failure model, 2) correlated VM failure model for server, and

3) correlated VM failure model for ToR switch and server.

Our solution consists of the statistical failure modeling, some

novel heuristic VM placement algorithms, and the adoption

of a tight tail bound theorem to infer the minimal number of

backup VMs needed to guarantee the reliability SLA.

Beyond the work presented in this paper, we are working

on the following aspects actively.

• Derive the solution for more complex failure model

(e.g., failures on core and aggregate layers) and do more

comprehensive simulations and evaluations;

• Perform resource-driven optimization: our solution has

only taken reliability into consideration, thus the proposed

VM placement algorithms always try to distribute the

VMs among the racks and servers as much as possible

to minimize the impact of correlated failures. However,

this might increase the energy consumption and commu-

nication bandwidth for cloud providers and performance

overhead between VMs for an application. Considering

the problem in more dimensions (e.g., power consump-

tion, bandwidth cost, etc.) leads to a more complex

optimization problem we are currently working on.

VII. ACKNOWLEDGEMENTS

This research is supported by Google’s Research Award,

NSF CSR-1409809,National Science Foundation under grant

numbers OCI-1203560, ACI-1445806, and ACI-1541215

REFERENCES

[1] YEOW, W.-L., WESTPHAL, C., AND KOZAT, U. C. Designing and
embedding reliable virtual infrastructures. ACM SIGCOMM Computer
Communication Review 41, 2 (2011), 57–64.

[2] BELOGLAZOV, A., AND BUYYA, R. Energy efficient resource man-
agement in virtualized cloud data centers. In Proceedings of the 2010
10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (2010), IEEE Computer Society, pp. 826–831.

[3] GILL, P., JAIN, N., AND NAGAPPAN, N. Understanding network
failures in data centers: measurement, analysis, and implications. In
ACM SIGCOMM Computer Communication Review (2011), vol. 41,
ACM, pp. 350–361.

[4] GUAZZONE, M., ANGLANO, C., AND CANONICO, M. Energy-efficient
resource management for cloud computing infrastructures. In Cloud
Computing Technology and Science (CloudCom), 2011 IEEE Third
International Conference on (2011), IEEE, pp. 424–431.

[5] HSU, C.-H., CHEN, S.-C., LEE, C.-C., CHANG, H.-Y., LAI, K.-C.,
LI, K.-C., AND RONG, C. Energy-aware task consolidation technique
for cloud computing. In Cloud Computing Technology and Science
(CloudCom), 2011 IEEE Third International Conference on (Nov 2011),
pp. 115–121.

[6] KOSLOVSKI, G., YEOW, W.-L., WESTPHAL, C., HUU, T. T., MON-
TAGNAT, J., AND VICAT-BLANC, P. Reliability support in virtual in-
frastructures. In Cloud Computing Technology and Science (CloudCom),
2010 IEEE Second International Conference on (2010), IEEE, pp. 49–
58.

[7] LIN, M., WIERMAN, A., ANDREW, L., AND THERESKA, E. Dynamic
right-sizing for power-proportional data centers. In INFOCOM, 2011
Proceedings IEEE (April 2011), pp. 1098–1106.

[8] LU, K., ROBLITZ, T., YAHYAPOUR, R., YAQUB, E., AND KOT-
SOKALIS, C. Qos-aware sla-based advanced reservation of infrastructure
as a service. In Cloud Computing Technology and Science (CloudCom),
2011 IEEE Third International Conference on (Nov 2011), pp. 288–295.

[9] ALON, N., AND SPENCER, J. H. The probabilistic method. John Wiley
& Sons, 2004.

[10] Data center switch solutions white paper, http://en.wikipedia.org/wiki/
Business logic layer.

[11] YANG, Z., LIU, L., QIAO, C., DAS, S., RAMESH, R., AND DU,
A. Y. Availability-aware energy-efficient virtual machine placement. In
Communications (ICC), 2015 IEEE International Conference on (June
2015), pp. 5853–5858.

[12] ZHANG, W., ZHANG, H., CHEN, H., ZHANG, Q., AND CHENG, A.
Improving the qos of web applications across multiple virtual machines
in cloud computing environment. In Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE 26th Inter-
national (May 2012), pp. 2247–2253.

[13] ZHAO, Q., XU, J., AND LIU, Z. Design of a novel statistics counter
architecture with optimal space and time efficiency. ACM SIGMETRICS
Performance Evaluation Review 34, 1 (2006), 323–334.

