Red Cloud and Aristotle: campus clouds and federations

Richard Knepper
Susan Mehringer
Adam Brazier
Brandon Barker
Resa Reynolds
rich.knepper@cornell.edu
shm7@cornell.edu
brazier@cornell.edu
beb82@cornell.edu
resa.reynolds@cornell.edu
Center for Advanced Computing

Cornell University
Ithaca, NY

ABSTRACT

Campus cloud resources represent significant resources for research
computing tasks, with the caveat that transitioning to cloud con-
texts and scaling analyses is not always as simple as it might seem.
We detail Red Cloud, Cornell’s campus research cloud, and some of
the work undertaken by the Center for Advanced Computing (CAC)
to help researchers make use of cloud computing technologies. In
2015, Cornell CAC joined with two other universities to develop
the Aristotle Cloud Federation, composed of separate campus cloud
resources and data sources, supporting a range of science use cases.
We discuss the lessons learned from helping researchers leverage
both of these science cloud resources as well as leveraging other
research cloud infrastructure and transitioning to public cloud.

KEYWORDS

cloud computing, campus cyberinfrastructure, human elements

ACM Reference Format:

Richard Knepper, Susan Mehringer, Adam Brazier, Brandon Barker, and Resa
Reynolds. 2019. Red Cloud and Aristotle: campus clouds and federations. In
Humans in the Loop: Enabling and Facilitating Research on Cloud Comput-
ing (HARC °19), July 29, 2019, Chicago, IL, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3355738.3355755

1 INTRODUCTION

The Cornell Center for Advanced Computing (CAC) has explored
a range of ways to leverage cloud computing in order to support
research efforts. CAC provides a selection of cloud computing re-
sources, both for researchers at Cornell as well as in the broader
national context. This paper discusses CAC’s cloud initiatives: Red

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HARC 19, July 28—-August 01, 2019, Chicago, IL

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7279-4/19/07...$15.00
https://doi.org/10.1145/3355738.3355755

Cloud, an on-premise OpenStack cloud resource for Cornell re-
searchers, and Aristotle, a Federated Cloud resource that includes
Red Cloud as well as resources from the University at Buffalo and
University of California Santa Barbara. The technical components
of the system are soundly outshined by the skills and knowledge of
CAC staff, which drive the organization’s ability to meet researcher
needs. We discuss considerations about implementing cloud re-
sources locally, including choosing and migrating between cloud
platforms, moving researcher code into cloud resources, a cost re-
covery model for cloud services, and engagement with public cloud
resources. We also describe future activities for research that the
CAC has marked as strategic directions for supporting research
conducted on cloud resources.

2 THE CENTER FOR ADVANCED
COMPUTING - OVERVIEW

The CAC provides services for researchers at Cornell University,
based on a cost recovery model, including expert consulting, cluster
management, storage, and cloud computing. Rather than provide a
centralized resource for all Cornell users, CAC services are tuned to
meet the needs of specific research units. Faculty engage CAC on a
per-project basis and leverage a broad range of expertise, including
systems and storage, database design and management, applica-
tion development, optimization, and deployment, visualization, and
cloud computing and containerization.

The project-focused nature of Cornell CAC’s model means that
staff time is spent in meeting individual researchers’ needs. CAC
staff members engage with researchers closely in their projects and
have a high level of collaborative work as a result, occasionally to
the extent that CAC take part in co-authorship and grant funding
opportunities due to the depth of engagement. This model also
means that particular technical needs of a given project can build
staff member expertise in that area that can then be used to support
other activities, so that knowledge building within the center’s set
of activities increases the range of expertise that can be offered to
further projects.

In addition to project based consulting at the CAC, there are gen-
eral service offerings which meet the needs of Cornell researchers:

https://doi.org/10.1145/3355738.3355755
https://doi.org/10.1145/3355738.3355755

HARC °19, July 28-August 01, 2019, Chicago, IL

storage, cluster management, and cloud computing. CAC storage is
provided for both online and archival needs, with a moderate cost
for recovering the costs of storage system hardware and compo-
nents. The CAC filesystem provides both file and object store access
for researchers, including mountable, Amazon S3, and Globus trans-
fer capabilities, and a data transfer node with direct connection to
Cornell’s 100Gb Internet2 connection. For faculty who need require
highly-coupled systems or have needs for continuous throughput
of HPC workflows, CAC staff handle cluster set-up, scheduling,
maintenance and patching for faculty-purchased clusters in the
Cornell datacenter, with a scaled cost recovery model based on
the number of nodes under CAC management. As the number of
managed nodes increases, the per-node cost decreases. For faculty
in need of more flexible computing with manageable infrastructure
and costing, Cornell CAC has created Red Cloud, an Infrastructure-
as-a-Service offering based on a pay-as-you-go plan.

2.1 Cornell Red Cloud

The Red Cloud on premise cloud computing resource is intended to
meet the needs of researchers who have computational needs that
can be served by an Infrastructure as a Service (IaaS) platform, with
a broad variety of available needs and with a significant amount
of resources in individual cloud instances. Red Cloud was initially
implemented using the Eucalyptus cloud platform [5], but with the
end of support for Eucalyptus, the CAC has migrated the system to
the OpenStack cloud platform. CAC has engaged a number of dif-
ferent research projects on Red Cloud and has been able to support
a wide range of scientific disciplines.

Red Cloud was designed to provide significant amounts of com-
putational capacity to researchers within instances. Red Cloud
nodes are connected by standard gigabit ethernet between nodes,
with a 40Gb uplink to Cornell’s 100Gb Internet2 connection. Cur-
rently, Red Cloud consists of over 1,000 cores, which are available
in instance sizes up to 28 cores with a standard 8GB of memory allo-
cated to each core, making the largest instance available (designated
”c28.m224”) a 28-core, 224GB system. Red Cloud has just made GPU
instances generally available, with GPU-enabled instances up to
4 Nvidia V100 GPU’s. Red Cloud users are provided a 50GB stor-
age volume initially with additional storage available as users re
quire. Block storage for Red Cloud instances is provided via a Ceph
storage pool. CAC’s Ceph pool currently provides roughly 1.5PB of
storage.

Red Cloud was initially architected and implemented using the
Eucalyptus virtual computing software. This software choice was
based first and foremost on Eucalyptus’ API-level compatibility with
Amazon AWS services. Since the initial deployment of Red Cloud
was considerably smaller than its current size, the reasoning was
that researchers making use of Red Cloud would easily transition to
AWS in the case that their analyses needed to scale beyond the scope
of what was readily available in Red Cloud. When official support
for Eucalyptus provided by a subsidiary of HP was discontinued,
the CAC team elected to move to OpenStack as a cloud platform
with considerable viability in the broader community and retain
options to scale to AWS when needed, if without API capability.

Richard Knepper, Susan Mehringer, Adam Brazier, Brandon Barker, and Resa Reynolds

2.2 The Red Cloud Subscription Model

Access to Red Cloud is available on a subscription basis, researchers
purchase subscriptions to core-hours as they need resources. An
individual subscription is equivalent to one core-year of computing
time, and includes access to 50GB of storage. Subscriptions can be
used as fast or as slowly as researchers desire and never expire. A
subscription can be used for as many or as few cores as needed by
the researcher at the time, in order to make the most of research
dollars spent on Red Cloud services.

The subscription model was created in order to reduce risk and
prevent cost overruns, commonly seen on public cloud services,
where cloud instances run outside the necessary time and continue
to incur usage fees. With a Red Cloud subscription, researchers
use up to their purchased number of subscriptions and then are
able to stop work or purchase additional subscriptions to keep
working, preventing cost overruns that can be painful to rectify.
Red Cloud resources are provisioned in a responsive fashion-as
the cloud reaches a set amount of utilization, additional nodes are
purchased to ensure that there is sufficient capacity for continued
growth. Based on this model, as more subscriptions are purchased
and usage increases, the cloud infrastructure is extended to meet
demands for computational resources.

2.3 Red Cloud for CISER

The Cornell Institute for Social and Economic Research (CISER)
has a long history of providing large scale computational resources
to Cornell social scientists and their collaborators. Two years ago,
CAC began moving CISER’s computing infrastructure to Red Cloud.
Red Cloud images are preconfigured with statistical software and
users are granted access via remote desktop or vnc, one user per
instance. Researchers have direct access to the CISER Data Archive
as well as their home directories. The result is a significant reduction
in systems management overhead (compared to bare metal) as
well as flexible operating system offerings (Windows or Linux)
and users are more productive because they have full access to
the cores and memory available via Red Cloud instances. As the
number of CISER users increases, more instances are employed
to meet demand, and scaling needs have been met by Red Cloud
resources without issue thus far. The CAC has begun planning
to move the Cornell Restricted Access Data Center (CRADC), a
secure computing environment for working with restricted data, to
a campus cloud environment.

3 ARISTOTLE FEDERATED CLOUD

The Aristotle Federated Cloud provides access to resources across
three academic institutions, based on a federated user and account-
ing model that allows for use of disparate data sets at each of the
federation members’ sites. Aristotle supports seven distinct science
use cases, which previously leveraged traditional high-performance
resources and required adaptation to make use of cloud resources.
In the following section we describe the development of the Aris-
totle Federated Cloud project, detail a set of the science use cases
supported by Aristotle, and discuss the process of migrating these
research analyses to cloud computing. We conclude with prescrip-
tions for moving research projects to the cloud and describe some of

Red Cloud and Aristotle: campus clouds and federations

the issues to be overcome and benefits of cloud computing models
for scientific research.

3.1 Aristotle Components

The Aristotle Federated Cloud allows researchers from any of the
member sites to access other clouds in the federation. Aristotle
project generation and management is conducted through the Aris-
totle Portal, which provides functions for user management, project
initiation and monitoring, and administration. In order to allow ac-
cess to individual clouds, all Federation clouds use Globus Auth [7]
in order to authenticate to cloud resources. Cloud usage is tracked
at each of the individual sites and sent to the Aristotle portal. Rec-
onciliation for usage of other federation resources is done on a
one-to-one core-hour basis: as a researcher uses cloud resources
at another federation member’s cloud, that federation member ac-
crues credits which can be spent on other cloud resources. Based
on the availability of different instance types, software, and data
sources at other cloud federation members, researchers may elect
to use credits where the infrastructure best meets the needs of their
analyses.

The management of the science team effort evolves as the scien-
tific users become more familiar with the infrastructure; initially,
Aristotle personnel work with researchers to elicit requirements
and architect a cloud-based solution on Aristotle hardware, but
as researchers become more familiar with the move to cloud, as
detailed in 4.1, they take ownership of ongoing development and
architecturing new, related work. Communication with researchers
is initially conducted via meetings and then ongoing communica-
tion is conducted via Slack; researchers regularly submit reports
on progress, including any new unresolved issues.

Aristotle user accounts allow access to all Aristotle resources,
so that inspecting the Aristotle dashboard allows an informed user
decision to run on any particular location or resource at that lo-
cation (for example, the GPU nodes at CAC). Allocations were
initially given by an even division of available resources by num-
ber of research projects, to allow for user on-boarding and user
testing, where researchers could request additional resources and
re-balancing of allocations would be conducted. In full production,
allocations are given by request via a lightweight allocation process
allowing Aristotle Users to submit their request and the Aristotle
Science Manager to approve or reject it via the User Portal.

3.2 Aristotle Science Cases

3.2.1 Weather Modeling with WRF. Weather modelling using the
Weather Research and Forecasting Model (WRF) from the National
Center for Atmospheric Research (NCAR) is a staple of supercom-
puter centers, and is used at a variety of scales. Although many
applications require hundreds or even tens of compute cores, many
researchers find considerable difficulty in installing WRF on local
resources and are very concerned about portability of months-long,
ongoing checkpointed runs from one installation to another. Con-
sequently, a containerised WRF build based on NCAR’s gives con-
siderable portability and the ability to test the stability of runs even
as they move across different hardware and clouds; meanwhile, the
stability of Aristotle’s cloud and the absence of a wall-time job limit
ensures the jobs can be launched on single many-core instances

HARC ’19, July 28-August 01, 2019, Chicago, IL

and not monitored continually. Aristotle staff built a WRF container
targeting single 28-core instances, where runs would last for several
months, to model the direct climatic effects of turbines’ meanwhile,
this also allowed testing the portability of the code across clouds
using Aristotle and a Jetstream allocation.

3.2.2 Radio Astronomy Transient Detection. Due to telescope sched-
uling, configuration and weather-related concerns, astronomy data
are typically taken irregularly; the search for transient astronomical
phenomena, in addition, typically comes with a requirement for
low-latency processing to allow for potential follow-up observa-
tions. The processing of radio astronomy data to find transient
phenomena such as Fast Radio Bursts (FRB), therefore, lends itself
to a cloud-based solution; additionally, the breadth of software em-
ployed by the Scientists in this Science Use Case, and the relative
difficulty in installing some of the software on processing resources,
encouraged early adoption of software containers. The Aristotle
team built an extensible software pipeline allowing astronomers,
including undergraduate and graduate students, to write their own
plug-ins in Python to explore new algorithms and computational
approaches to teasing out astrophysical signals from a mass of
Radio Frenquency Interference (RFI)

3.2.3 Water Resource Management using OPENMORDM Data. Wa-
ter Management simulations using OPENMORDM allow users such
as municipalities to test different approaches to inform decisions
with considerable financial and environmental impact. These com-
putations use the Message-Passing Interface (MPI) to marshal work
on hundreds, thousands or more cores but with relatively low de-
mand on communications latency, so as to require relatively rough
parallelisation; the significance of this work, the desired portability
of the code and the gentle demands on cross-worker communica-
tions make this an appealing case for a containerized cloud-based
approach and this Science Use Case is testing the scalability of
such an approach, compared to using physical cluster-based in-
frastructure. Working with the science researchers, Aristotle staff
architected and produced a container-based virtual MPI cluster on
Aristotle, the performance and scaling of which is currently being
tested.

4 EXPERIENCES FROM CAC’S SUPPORT OF
CLOUD COMPUTING EFFORTS

4.1 Bringing new use cases to cloud

The majority of our Red Cloud users previously computed on desk-
tops, shared workstations, or clusters via batch schedulers. The
transition to cloud computing for all starting points held a number
of real and perceived hurdles. Few of our users had the system
administration skills needed to build images; some found a group
member with the required skills to keep costs down, and others
funded the CAC team to provide the service. New issues arise in this
area, such as understanding how to open ports for given security
groups to provide access. Setting up ssh key pairs is likewise a new
experience for many new-to-cloud users, despite some familiarity
with ssh login. At this point, we are only providing the environment
to create linux or windows instances; therefore some users also
must learn to use a new-to-them operating system. After an image
is built, the researchers must learn how to use the dashboard or user

HARC °19, July 28-August 01, 2019, Chicago, IL

interface effectively; the interface is not difficult to use, but learning
new concepts and terminology can be a perceived barrier and is
essential. We have frequently seen confusion over instance states
and accidental use of compute time, resulting in using compute time
without realizing it. Dusty decks persist through all compute shifts,
including to cloud. While MPI may not be the best programming
solution for a given algorithm on cloud, we have found people are
reluctant to rewrite code for cloud computing.

The runtime of research code in the cloud is an important consid-
eration; our users have been quite happy with the cloud experience
even when the total runtime is lower, because the actual response
time is often less on a cloud resource, due to not having to operate
within the framework of a batch processing system or other queue.
There tend to be very few issues when using cloud resources for
loosely coupled, distributed computations, or computations where
large-single nodes suffice, but as the chattiness of a distributed com-
putation increases, scheduling and cluster architecture becomes
an important factor in decreasing latency. This was an issue with
the WREF use case, but despite their prior experience running on
specialized systems such as Cray supercomputers, the researchers
were in fact quite happy with the ability to keep several of our
largest nodes running continuously, inspecting results every few
weeks or months, rather than having to operate with a queue on a
large shared resource.

4.2 Creating Containers for Researchers

A goal for many of our users has been to containerize code. This
makes the resulting code more portable between clouds and VM
image types, and has the added benefits of making the research
code more maintainable in the long term and giving the researcher
the ability to run the same environment on their development sys-
tem and on whatever cloud or HPC resources they wish to target;
though for HPC there is the caveat that Singularity must be the
supported container platform. This is quite valuable in practice,
since over the course of a research project, a PI may contracts or
cloud credits with multiple clouds or on-site institutional clouds.
Several of our users have expressed an interest in doing develop-
ment and testing on Aristotle and then running larger “production”
runs on public clouds. Another situation that may arise for multi-PI
projects (especially those spanning institutions) is that each PI may
have access to different cloud or HPC resources.

Container technology was not yet mainstream at the inception
of the Aristotle project, so none of the existing researchers from
the Cornell sites brought containerized code to the table. However,
in the case of our WRF project, there was an existing container
example from NCAR that served as a basis for our own WRF con-
tainer. Other projects gradually adapted to using containerized code.
There are two primary hurdles when it comes to containerization of
software, other than the docker/Singularity dichotomy mentioned
previously. These are user training and hosting container images
with proprietary code.

The success of user training largely depends on the user involved,
though even when a particular user or group may have difficulty
embracing containerization concepts, it is still advantageous for
CAC staff to have the containers to work with, greatly diminishing

Richard Knepper, Susan Mehringer, Adam Brazier, Brandon Barker, and Resa Reynolds

maintenance and deployment costs that often stem from project-
specific build issues.

With regard to proprietary code in container images, we’ve had
two strategies: mount from the VM, or private distribution of con-
tainer images. The former option was ideal in the case of MATLAB,
since it has a large footprint, generating and distributing container
images would be slightly more unwieldy, but this admittedly results
in an additional step that may go wrong. The other, more common
approach, is simply to distribute the container images through pri-
vate means. The downside here is that a bit more infrastructure
is required, though most of the time, we simply build the image
from the (publicly distributed) container recipe (e.g. Dockerfile,
Singularity Recipe), and use scp or rsync to distribute the image to
whatever nodes need the image; we generally do not worry about
storing the image during the development process, as maintaining
a version-controlled container specification is good enough. With
regard to proprietary code in container images, we've had two
strategies: mount from the VM, or private distribution of container
images. The former option was ideal in the case of MATLAB, since
it has a large footprint, generating and distributing container im-
ages would be slightly more unwieldy, but this admittedly results
in an additional step that may go wrong. The other, more common

appro

4.3 Transitioning to Public Cloud

Public cloud offers scale, and recognizability to researchers, but cost
and technology adoption continues to be an issue. While the public
cloud offers considerable benefits for a number of computational
efforts, the experiences of researchers on public cloud tend to be
varied. Many public clouds provide a number of services, which
continues to grow, with minimal documentation for those who
want to adopt those services. For the technologist who is running
an enterprise, cloud service technology adoption is critical to the
business. For researchers who are hoping to leverage technologies,
science remains the critical component, and the information tech-
nology supporting it is a tool to support it. Training materials for
public clouds tend to be sparse and frequently do not track the state
of play of the services on offer. The fast-moving evolution of public
cloud services also makes it difficult for external organizations to
effectively develop training and documentation materials for public
clouds.

In addition to complexities with adopting public cloud technolo-
gies, a number of cost factors confront researchers who do want to
make the transition to these resources. Public clouds are designed
to enable computation, regardless of the budget of the consumer.
This means that researchers must identify their own ways of con-
trolling costs and efficiently using services. Some efforts to leverage
the public cloud spot market and predict probabilities of job com-
pletion based on pricing have been somewhat successful [8], but
changing availability of data means that those that create predictive
analytics for controlling cloud costs are in an arms race against the
providers. In addition, data movement costs represent an additional
component of cloud usage that can stymie researchers. In addition
to costs to transfer data in and out of cloud resources, which tend
to make data easier and cheaper to get in than it is to get out, var-
ious campuses have institutional agreements which lessen these

Red Cloud and Aristotle: campus clouds and federations

costs, depending on network configuration and the level of resource
consumption. This means that researchers with different home in-
stitutions may be confronted with different costs for data egress,
which makes cross-institutional collaboration additionally complex.
Software licensing represents another complexity of public cloud
consumption, while Microsoft offers "bring your own license" or
software assurance-based programs, other software licensing poli-
cies remain in the bare-metal server world. Finally, institutional
policies on intellectual property may be affected by public cloud
terms and conditions, creating another hurdle to navigation.

4.4 Future activities

Docker [1] is, by far, the most prevalent container technology and is
generally satisfactory for most cloud uses we are interested in, since
the user also controls the VM the container is running in, many of
the typical Docker security concerns are not an issue. Conversely,
the Aristotle cloud has also been a satisfactory environment for
many of our users, and bursting to larger public clouds could also
be achieved with Docker. For two of our use cases (OpenMORDM
[3] and WREF [6]) where running on the cloud and HPC platforms
are both desirables, we do have plans to support Singularity [4],
but Singularity does not fit our Docker model when dealing with
MPI, and both of these use cases require MPL In particular, Sin-
gularity supposes that MPI is external to the container (as it must
be on a shared HPC resource), whereas this is not the case in our
Docker containers. This Singularity assumption also introduces
some build-time difficulties, as the resulting image must target
a specific version and implementation of MPI. At CAC we have
worked on making containers portable between Singularity and
Docker by using common build scripts and continue to explore new
ways to make the user experience of using Singularity in the cloud
and on HPC more amenable to researchers and CAC staff.

In addition to containers, we have also investigated the use of
declarative instance configuration using Nix [2]. Nix can also be
used from within a container, or can provision and entire Linux
OS. An example of the former use is the OpenMORDM (Water-
paths) container, and of the latter is the Metabolic Modeling use
case, which also employs MATLAB. Our experience has been that
Nix takes more effort to create the initial environment, but pro-
vides more deterministic builds with smaller footprints (no images
needed, assuming stable repositories used for retrieving dependen-
cies) and more flexibility: a container or a VM can be used, a shared
system can also be used with built packages being pulled from a
package store on disk (no image overlap), and the ability to override
build options in package dependencies.

One of the future activities that is vital to researcher uptake
is the understanding of the costs involved in making use of local
and public cloud resources. The public cloud advertises that it is
less expensive to complete tasks and more flexible in terms of the
services on offer, but public cloud vendors have few incentives
to be clear about what costs are incurred in the course of getting
research done. The Aristotle team has engaged with a Flexera, a cost
optimization firm, to use its RightScale product, which can provide
insight into how costs are broken down and provide suggestions
on strategies to reduce overall cloud costs. Using the work on
containerized codes described above, the Aristotle team is exploring

HARC ’19, July 28-August 01, 2019, Chicago, IL

the use of pilot jobs that can be used to predict the cost of getting a
job run in public cloud. By preparing a container and submitting
it to be run in the public cloud, and analyzing the billing output
created by the pilot job, the Aristotle team believes it can provide
an estimator that a researcher can then use to decide whether using
a public cloud resource is cost effective for her particular research.

This cost estimate can be incorporated into the Aristotle portal
and provide an overall view of options available to the researcher.
In a complete cost-projection page in the Aristotle portal, a re-
searcher can see what resources are available through Aristotle,
what it would cost to run the same job in Amazon, Azure, or Google,
and what other resources they might be able to leverage (such as
an allocation through another NSF program). This would give a
researcher the flexibility to run for free on Aristotle to get regular
work done, or if up against a deadline, to spend money and scale
up on a public cloud provider.

5 CONCLUSION

In our description of the Red Cloud and Aristotle resources, we have
detailed some of the activities involved in supporting researchers
transitioning to and making full usage of cloud technologies for
science. These resources represent considerable potential, and can
be delivered at minimal costs, but researchers do need to change
their means of interacting with compute resources and be prepared
to engineer some of their analyses around the differences between
cloud and traditional scientific computing practices. Human facil-
itators provide considerable benefit to researchers who want to
make use of cloud resources in an efficient and useful manner, and
the Aristotle project provided a significant amount of assistance
to the science teams involved in order to support the transition to
cloud analyses-with considerable benefits and potential for further
develop to those science cases.

The complexity of cloud offerings, both on-premise campus cloud
resources as well as public cloud offerings, means that human guides
are indispensable to the process of adopting these technologies. In
addition to making sure that applications run smoothly and quickly
in the new context, researchers often require support in deciphering
the pricing and costs of these technologies. The proliferation of
offerings and rapid pace of change in services means that facilitators
must dedicate effort to keeping up with technological change in
order to ensure users have safe and efficient usage of these resources.
Future work will need to focus on making it possible to leverage
regulated data in the cloud and manage data retention and sharing
agreements in an environment where providers can simply delete
data when funds for retention run out. The cloud environment
represents considerable potential to computational scientists but
also requires adaptation and flexibility to make truly workable.

ACKNOWLEDGMENTS
This work is supported by NSF Award 1541215.

REFERENCES

[1] Ryan Chamberlain and Jennifer Schommer. 2014. Using Docker to Support Repro-
ducible Research. https://doi.org/10.6084/m9.figshare.1101910.v1

[2] EELCO DOLSTRA, ANDRES LAUH, and NICOLAS PIERRON. 2010. NixOS: A
purely functional Linux distribution. Journal of Functional Programming 20, 5-6
(2010), 5774AS$615. https://doi.org/10.1017/50956796810000195

https://doi.org/10.6084/m9.figshare.1101910.v1
https://doi.org/10.1017/S0956796810000195

HARC °19, July 28-August 01, 2019, Chicago, IL

[3] David Hadka, Jonathan Herman, Patrick Reed, and Klaus Keller. 2015. An open
source framework for many-objective robust decision making. Environmental
Modelling Software 74 (2015), 114 - 129. https://doi.org/10.1016/j.envsoft.2015.07.
014

Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. 2017. Singularity:
Scientific containers for mobility of compute. PLOS ONE 12, 5 (05 2017), 1-20.
https://doi.org/10.1371/journal.pone.0177459

[5] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil So-
man, Lamia Youseff, and Dmitrii Zagorodnov. 2009. The eucalyptus open-source
cloud-computing system. In Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid. IEEE Computer Society, 124-131.
Jordan G. Powers, Joseph B. Klemp, William C. Skamarock, Christopher A. Davis,
Jimy Dudhia, David O. Gill, Janice L. Coen, David J. Gochis, Ravan Ahmadov,
Steven E. Peckham, Georg A. Grell, John Michalakes, Samuel Trahan, Stanley G.

=

G

Richard Knepper, Susan Mehringer, Adam Brazier, Brandon Barker, and Resa Reynolds

Benjamin, Curtis R. Alexander, Geoffrey J. Dimego, Wei Wang, Craig S. Schwartz,
Glen S. Romine, Zhiquan Liu, Chris Snyder, Fei Chen, Michael J. Barlage, Wei
Yu, and Michael G. Duda. 2017. The Weather Research and Forecasting Model:
Overview, System Efforts, and Future Directions. Bulletin of the American Mete-
orological Society 98, 8 (2017), 1717-1737. https://doi.org/10.1175/BAMS-D-15-
00308.1 arXiv:https://doi.org/10.1175/BAMS-D-15-00308.1

Steven Tuecke, Rachana Ananthakrishnan, Kyle Chard, Mattias Lidman, Brendan
McCollam, Stephen Rosen, and Ian Foster. 2016. Globus Auth: A research identity
and access management platform. In 2016 IEEE 12th International Conference on
e-Science (e-Science). IEEE, 203-212.

Rich Wolski and John Brevik. 2016. Providing statistical reliability guarantees in the
aws spot tier. In Proceedings of the 24th High Performance Computing Symposium.
Society for Computer Simulation International, 13.

https://doi.org/10.1016/j.envsoft.2015.07.014
https://doi.org/10.1016/j.envsoft.2015.07.014
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1175/BAMS-D-15-00308.1
https://doi.org/10.1175/BAMS-D-15-00308.1
http://arxiv.org/abs/https://doi.org/10.1175/BAMS-D-15-00308.1

	Abstract
	1 Introduction
	2 The Center for Advanced Computing - Overview
	2.1 Cornell Red Cloud
	2.2 The Red Cloud Subscription Model
	2.3 Red Cloud for CISER

	3 Aristotle Federated Cloud
	3.1 Aristotle Components
	3.2 Aristotle Science Cases

	4 Experiences from CAC's support of Cloud Computing Efforts
	4.1 Bringing new use cases to cloud
	4.2 Creating Containers for Researchers
	4.3 Transitioning to Public Cloud
	4.4 Future activities

	5 Conclusion
	Acknowledgments
	References

