

Cornell

SC18 Briefing

-

Center for Advanced Computing (CAC)

- Mission
 - Deliver advanced computing, training, and consulting services to accelerate discovery and broaden impact
 - Support Cornell faculty with >\$100M in research funding from NSF, NIH, USDA, DOE, NASA ...
 - Enhance the national cyberinfrastructure ecosystem
- Most recent NSF awards
 - Multi-Messenger Astrophysics Cyberinfrastructure Planning Lead
 - Institute for Research and Innovation in Software for High-Energy Physics (IRIS-HEP) Software Development Team
 - TACC Frontera Training Partner
 - Aristotle Cloud Federation

Aristotle Cloud Federation

NSF CC*DNI DIBBs project #1541215 (2015-2020)

Aristotle leadership team

David Lifka, PhD PI and Project Director VP for Information Technologies & CIO Director, Center for Advanced Computing Cornell University

Tom Furlani, PhD Co-PI Director, Center for Computational Research University at Buffalo

Rich Wolski, PhD Co-Pl Professor, Computer Science University of California, Santa Barbara

Aristotle Cloud Federation

- Federated cloud model goals
 - Reduce time to science
 - Share resources between institutions
 - Cross-institution allocations
 - Open XDMoD cloud accounting and metrics
 - Burst to public cloud during peak usage
 - Provide a complete portal interface

federatedcloud.org

Testing the Model with Aristotle Use Cases

Onboarding Aristotle Use Cases	Use Case Goals
Developed webGlobe interface to visualize and analyze geo spatial data (Chandola)	Model changes in future climate simulations using machine learning algorithms
Developed data framework to compute intraday market efficiency on all U.S. stocks (Roesch)	Enable policymakers to more assess the impact of high- frequency trading on markets
Implemented Docker version of WRF physics model (Pryor)	Improve understanding of wind variability to reduce wind energy project costs and risks
Developed containerized solution with all pulsar processing software (Cordes)	Increase opportunities for astronomers and the public to make discoveries with new survey data
Containerized build scripts to run in MPI across multiple VMs using Docker (Reed)	Execute distributed software faster at cloud scale on Aristotle, XSEDE resources, and public clouds
Constructed multi-species metabolic networks and verified behavior (Douglas)	Exploit animal microbe symbioses to produce pest resistant crops
Developed IoT, edge computing, and cloud technologies for SmartFarms (McCurdy/Krintz)	Increase farm productivity and save resources (e.g., 66% less water used at model vineyard in CA)
Digital humanities (Dartmouth)	New use cases; goals TBA